Great ideas for a beginner like me to play with data mining.
Data and challenge proposed by kaggle.com:
https://www.kaggle.com/c/titanic/dat
Good tutorials and proposed solutins here:
http://trevorstephens.com/post/72916401642/titanic-getting-started-with-r and
https://github.com/trevorstephens/titanic
Also: https://www.kaggle.com/amoyakd/titanic/randomforest-method-v1-0
https://www.kaggle.com/c/titanic/forums
Some reading on R capabilities:
http://www.edureka.co/blog/implementation-of-decision-tree/
http://www.r-bloggers.com/a-brief-tour-of-the-trees-and-forests/
Other tutorials:
Iris data: http://rischanlab.github.io/RandomForest.html
(R Basics worth exploring: http://rischanlab.github.io/)
http://dni-institute.in/blogs/random-forest-using-r-step-by-step-tutorial/ (might be even better for a start
http://www.edureka.co/blog/implementation-of-decision-tree/
Biostars Tutorial: Machine Learning For Cancer Classification - Part 1 - Preparing The Data Sets
https://www.biostars.org/p/85124/
http://www.tutorialspoint.com/r/r_random_forest.htm
http://www.analyticsvidhya.com/blog/2015/09/random-forest-algorithm-multiple-challenges/
Other important topics to explore:
http://www.analyticsvidhya.com/blog/2015/12/faster-data-manipulation-7-packages/
Brak komentarzy:
Prześlij komentarz