https://github.com/dmlc/xgboost/blob/master/R-package/vignettes/discoverYourData.Rmd
https://cran.r-project.org/
https://github.com/dmlc/xgboost/blob/master/R-package/vignettes/xgboostPresentation.Rmd
https://github.com/dmlc/xgboost/tree/master/R-package/demo
https://rpubs.com/flyingdisc/practical-machine-learning-xgboost
http://courseprojects.
http://xgboost.readthedocs.io/
https://www.kaggle.com/
http://www.analyticsvidhya.
Material from recent meetup in Warsaw:
https://github.com/mi2-warsaw/SER/blob/master/SER_XIX/xgboost.R
Cleaning and some interesting packages (editrules, deducorrect):
https://cran.r-project.org/doc/contrib/de_Jonge+van_der_Loo-Introduction_to_data_cleaning_with_R.pdf
http://www.r-bloggers.com/three-quick-and-simple-data-cleaning-helper-functions-december-2013/
http://www.meetup.com/amst-R-dam/events/57161682/ and especially:
http://cran.r-project.org/web/packages/editrules/index.html
http://cran.r-project.org/web/packages/deducorrect/index.html
Very good examples: https://github.com/data-cleaning
http://www.r-bloggers.com/deductive-imputation-with-the-deducorrect-package/
Time Series:
http://www.r-bloggers.com/time-series-analysis-and-mining-with-r/
Ensemble:
https://cran.r-project.org/web/packages/caretEnsemble/vignettes/caretEnsemble-intro.html
Caret: (very good stuff): https://github.com/pbiecek/DataMining/tree/master/MINI_2015
Other:
http://www.datasciencecentral.
Github new tools (also offline):
Write a book:
https://www.gitbook.com/
Collect and share snippets of code:
https://gist.github.com/
Brak komentarzy:
Prześlij komentarz